

US010915729B2

(12) United States Patent Dinov et al.

(54) THREE-DIMENSIONAL CELL AND TISSUE IMAGE ANALYSIS FOR CELLULAR AND SUB-CELLULAR MORPHOLOGICAL MODELING AND CLASSIFICATION

(71) Applicant: The Regents of The University of Michigan, Ann Arbor, MI (US)

(72) Inventors: Ivaylo Dinov, Ann Arbor, MI (US);
Brian D. Athey, Ypsilanti, MI (US);
David S. Dilworth, Ann Arbor, MI
(US); Ari Allyn-Feuer, Ypsilanti, MI
(US); Alexandr Kalinin, Ann Arbor,

(US)

(73) Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, Ann

Arbor, MI (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 131 days.

MI (US); Alex S. Ade, Ann Arbor, MI

(21) Appl. No.: 16/277,128

(22) Filed: Feb. 15, 2019

(65) Prior Publication Data

US 2019/0258846 A1 Aug. 22, 2019

Related U.S. Application Data

- (60) Provisional application No. 62/632,663, filed on Feb. 20, 2018.
- (51) Int. Cl. G06K 9/00 (2006.01) G06K 9/46 (2006.01) (Continued)

(10) Patent No.: US 10,915,729 B2

(45) **Date of Patent:**

Feb. 9, 2021

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

2016/0012583 A1 1/2016 Cales et al. 2016/0116384 A1 4/2016 Chen et al. (Continued)

FOREIGN PATENT DOCUMENTS

JP 2014134517 A 7/2014

OTHER PUBLICATIONS

Y. Shi, et al "Robust Surface Reconstruction Via Laplace-Beltrami Eigen-Projection and Boundary Deformation", IEEE Transactions on Medical Imaging, vol. 29, No. 12 (Dec. 2010).

(Continued)

Primary Examiner — Michael R Neff (74) Attorney, Agent, or Firm — Harness, Dickey & Pierce, P.L.C.

(57) ABSTRACT

The ability to automate the processes of specimen collection, image acquisition, data pre-processing, computation of derived biomarkers, modeling, classification and analysis can significantly impact clinical decision-making and fundamental investigation of cell deformation. This disclosure combine 3D cell nuclear shape modeling by robust smooth surface reconstruction and extraction of shape morphometry measure into a highly parallel pipeline workflow protocol for end-to-end morphological analysis of thousands of nuclei and nucleoli in 3D. This approach allows efficient and informative evaluation of cell shapes in the imaging data and represents a reproducible technique that can be validated, modified, and repurposed by the biomedical community. This facilitates result reproducibility, collaborative method validation, and broad knowledge dissemination.

21 Claims, 9 Drawing Sheets

